pandas_ market calendars

Ryan Sheftel

Feb 10, 2024

CONTENTS

1 Documentation 3
2 Overview 5
3 Calendars 7
4 Quick Start 9
5 Contributing 11
6 Future 13
7 Sponsor 15
8 Updates 17
9 Markets & Exchanges 27
10 Package Contents 29
11 Examples 47
12 New Market or Exchange 63
13 Indices and tables 65
Python Module Index 67

Index 69

pandas_market_calendars

sphinx-quickstart on Tue Dec 27 08:02:38 2016.

Market calendars to use with pandas for trading applications.

CONTENTS 1

https://badge.fury.io/py/pandas-market-calendars
http://pandas-market-calendars.readthedocs.io/en/latest/?badge=latest
https://coveralls.io/github/rsheftel/pandas_market_calendars?branch=master

pandas_market_calendars

2 CONTENTS

CHAPTER
ONE

DOCUMENTATION

http://pandas-market-calendars.readthedocs.io/en/latest/

http://pandas-market-calendars.readthedocs.io/en/latest/

pandas_market_calendars

4 Chapter 1. Documentation

CHAPTER
TWO

OVERVIEW

The Pandas package is widely used in finance and specifically for time series analysis. It includes excellent functionality
for generating sequences of dates and capabilities for custom holiday calendars, but as an explicit design choice it does
not include the actual holiday calendars for specific exchanges or OTC markets.

The pandas_market_calendars package looks to fill that role with the holiday, late open and early close calendars for
specific exchanges and OTC conventions. pandas_market_calendars also adds several functions to manipulate the
market calendars and includes a date_range function to create a pandas Datetimelndex including only the datetimes
when the markets are open. Additionally the package contains product specific calendars for future exchanges which
have different market open, closes, breaks and holidays based on product type.

This package provides access to over S0+ unique exchange calendars for global equity and futures markets.

This package is a fork of the Zipline package from Quantopian and extracts just the relevant parts. All credit for their
excellent work to Quantopian.

2.1 Major Releases

As of v1.0 this package only works with Python3. This is consistent with Pandas dropping support for Python2.

As of v1.4 this package now has the concept of a break during the trading day. For example this can accommodate
Asian markets that have a lunch break, or futures markets that are open 24 hours with a break in the day for trade
processing.

As of v2.0 this package provides a mirror of all the calendars from the exchange_calendars package, which itself is the
now maintained fork of the original trading_calendars package. This adds over 50 calendars.

As of v3.0, the function date_range() is more complete and consistent, for more discussion on the topic refer to PR
#142 and Issue #138.

As of v4.0, this package provides the framework to add interruptions to calendars. These can also be added to a schedule
and viewed using the new interruptions_df property. A full list of changes can be found in PR #210.

2.2 Source location

Hosted on GitHub: https://github.com/rsheftel/pandas_market_calendars

https://github.com/gerrymanoim/exchange_calendars
https://github.com/rsheftel/pandas_market_calendars

pandas_market_calendars

2.3 Installation

pip install pandas_market_calendars

Arch Linux package available here: https://aur.archlinux.org/packages/python-pandas_market_calendars/

6 Chapter 2. Overview

https://aur.archlinux.org/packages/python-pandas_market_calendars/

CHAPTER
THREE

CALENDARS

The list of available calendars

https://pandas-market-calendars.readthedocs.io/en/latest/calendars.html

pandas_market_calendars

8 Chapter 3. Calendars

CHAPTER
FOUR

QUICK START

import pandas_market_calendars as mcal

Create a calendar
nyse = mcal.get_calendar('NYSE")

Show available calendars

print(mcal.get_calendar_names())

early = nyse.schedule(start_date='2012-07-01", end_date='2012-07-10")

early
market_open market_close
2012-07-02 2012-07-02 13:30:00+00:00 2012-07-02 20:00:00+00:00
2012-07-03 2012-07-03 13:30:00+00:00 2012-07-03 17:00:00+00:00
2012-07-05 2012-07-05 13:30:00+00:00 2012-07-05 20:00:00+00:00
2012-07-06 2012-07-06 13:30:00+00:00 2012-07-06 20:00:00+00:00
2012-07-09 2012-07-09 13:30:00+00:00 2012-07-09 20:00:00+00:00
2012-07-10 2012-07-10 13:30:00+00:00 2012-07-10 20:00:00+00:00
[mcal.date_range(early, frequency="1D")
DatetimeIndex(['2012-07-02 20:00:00+00:00', '2012-07-03 17:00:00+00:00"',
'2012-07-05 20:00:00+00:00', '2012-07-06 20:00:00+00:00',
'2012-07-09 20:00:00+00:00', '2012-07-10 20:00:00+00:00'],
dtype="datetime64[ns, UTC]', freqg=None)
[mcal.date_range(early, frequency="1H")
DatetimeIndex(['2012-07-02 14:30:00+00:00', '2012-07-02 15:30:00+00:00",
'2012-07-02 16:30:00+00:00', '2012-07-02 17:30:00+00:00',
'2012-07-02 18:30:00+00:00', '2012-07-02 19:30:00+00:00',
'2012-07-02 20:00:00+00:00', '2012-07-03 14:30:00+00:00',
'2012-07-03 15:30:00+00:00', '2012-07-03 16:30:00+00:00',
'2012-07-03 17:00:00+00:00', '2012-07-05 14:30:00+00:00',
'2012-07-05 15:30:00+00:00', '2012-07-05 16:30:00+00:00"',
'2012-07-05 17:30:00+00:00', '2012-07-05 18:30:00+00:00',
'2012-07-05 19:30:00+00:00', '2012-07-05 20:00:00+00:00',

(continues on next page)

pandas_market_calendars

'2012-07-06
'2012-07-06
'2012-07-06
'2012-07-06
'2012-07-09
'2012-07-09
'2012-07-09
'2012-07-10
'2012-07-10
'2012-07-10
'2012-07-10

14:
16:
18:
20:
15:
17:
19:
14:
16:
18:
20:

30
30
30
00
30
30
30
30
30
30
00

:00+00:
:00+00:
:00+00:
:00+00:
:00+00:
:00+00:
:00+00:
:00+00
:00+00:
:00+00:
:00+00:

00',
00',
00',
00',
00',
00',
00',

:00',

00',
00',
00'1,

'2012-07-06
'2012-07-06
'2012-07-06
'2012-07-09
'2012-07-09
'2012-07-09
'2012-07-09
'2012-07-10
'2012-07-10
'2012-07-10

dtype="datetime64[ns, UTC]', freg=None)

15:
17:
19:
14:
16:
18:
20:

15

30
30
30
30
30
30
00

130
17:
19:

30
30

:00+00:
:00+00:
:00+00:
:00+00:
:00+00
:00+00:
:00+00:
:00+00
:00+00:
:00+00:

(continued from previous page)
00',
00',
00',
00",

:00',

00',
00',

:00',

00',
00',

10

Chapter 4. Quick Start

CHAPTER
FIVE

CONTRIBUTING

All improvements and additional (and corrections) in the form of pull requests are welcome. This package will grow
in value and correctness the more eyes are on it.

To add new functionality please include tests which are in standard pytest format.
Use pytest to run the test suite.

For complete information on contributing see CONTRIBUTING.md

11

https://github.com/rsheftel/pandas_market_calendars/blob/master/CONTRIBUTING.md

pandas_market_calendars

12 Chapter 5. Contributing

CHAPTER
SIX

FUTURE

This package is open sourced under the MIT license. Everyone is welcome to add more exchanges or OTC markets,
confirm or correct the existing calendars, and generally do whatever they desire with this code.

13

pandas_market_calendars

14 Chapter 6. Future

CHAPTER
SEVEN

SPONSOR

0 TradingHours.com

TradingHours.com provides the most accurate and comprehensive coverage of market holidays and trading hours data
available. They cover over 900 markets around the world. Their data is continually monitored for changes and updated
daily. Learn more

15

https://www.tradinghours.com/data
https://www.tradinghours.com
https://www.tradinghours.com/data

pandas_market_calendars

16 Chapter 7. Sponsor

CHAPTER
EIGHT

UPDATES

8.1 Change Log

8.1.1 Updates

4.4.0 (02/10/2024)

* Verified to work on pandas 2.2.0, max version changed in pyproject.toml

» Updated minimum version of Python to 3.9

* Corrected 2024 us sifma holidays & early closes #326

* Added national holiday for BMF calendar (Black Awareness Day, Nov 20th) #321
¢ Added BMF calendar holiday for New Year’s Eve on Sunday #318

* BSE/NSE trading holidays 2024 updated #316

4.3.3 (12/30/2023)
¢ PR #310 to add EUREX Fixed Income calendars
* PR #311 to add good friday special closes for CME Globex

4.3.2 (12/09/2023)

» Reformat all code using Black and make black a standard PR #290
Add XNSE as a name for BSE calendar

Update holidays for BSE # 277
» Update holidays for CN # 305
* Add IEX to list of exchanges

17

pandas_market_calendars

4.3.1 (09/06/2023)

¢ Fixed broken build PR #292

4.3.0 (09/05/2023)

* Fixed for pandas 2.0 so all tests pass PR #282
* Move exchange_calendar*.py files to pandas_market_calendar/exchange_calendars/ PR #284
* Move holidays_*.py to pandas_market_calendar/holidays/ PR #284

* Major cleanup including unused imports PR #284

4.2.1 (08/21/2023)

* Fix the pyproject.toml to properly generate sdist PR #267
* Remove .travis.yml file as Travis-CI is no longer used

* Merge .coveragerc into pyproject.toml

4.2.0 (08/20/2023)

CBOE GoodFriday special close is broken, reverted back to standard GoodFriday logic PR #265
Fixed BSE Holiday PR #248 Issue #245

Updated TASE Holidays 2022-2025 PR #263

 King Charles III’s Coronation Day holiday to LSE calendar PR #255

Added NYSE tests for 2024 and 2025 PR #259

* Deleted setup.cfg that was only used for flake8. Will move to Black in a future release

* Moved all setuptools build workflows to pyproject.toml and deleted setup.py

4.1.4 (02/04/2023)

» Updated TASE Holidays 2022-2025

4.1.3 (12/26/2022)

* Added Chinese 2023 holidays

18 Chapter 8. Updates

pandas_market_calendars

4.1.2 (12/08/2022)

* Added 2023 holidays to BSE calendar

4.1.1 (10/31/2022)

* Fix for bug in NYSEExchangeCalendar.valid_days

4.1.0 (10/08/2022)

* Added UK and Australia holidays for Queen Elizabeth II’s State Funeral

4.0.3 (10/08/2022)

¢ Enabled tests that failed before PR #215

4.0.2 (10/08/2022)

* Implemented new release management

4.0.1 (09/03/22)

* Fix duplicates bug in special_dates

¢ Fix tz=None bug in NYSEExchangeCalendar.valid_days

4.0 (08/02/22)

* Added interruptions support

» Updated MarketCalendar.open_at_time to respect interruptions
 Special times can be set with offsets

* MarketCalendar.days_at_time returns a pandas.Series

* calendar_utils.date_range supports schedules of any timezone

3.5 (06/25/22)

» Updated BMF
* New CME calendar setup

* New CME calendars for equities, fixed income, ags, energies, metals, and FX

8.1. Change Log

19

pandas_market_calendars

3.4 (03/05/22)

» Update to work with pandas 1.4.0

* Fix boxing day for Australia

Add SIFMA US, UK and JP calendars
Add IEX calendar

Add NSE calendar

3.3 (01/30/22)

PR #166 to solve the issue raised in #164

Add Juneteenth to NYSE calendar
¢ Fixed CN holidays
* Make MarketCalendars pickleable

3.2 (10/10/21)

* Major refactoring of the underlying code from PR #150 thanks to https://github.com/Stryder-Git

* Fixed 12/24/1999 early close on NYSE
3.1 (08/29/21)

¢ Added September 11 holidays to TSX calendar

* Made the minimum version for exchange_calendars >= 3.3 to resolve problem with newer versions of pandas
3.0 (8/17/21)

* Major update to the date_range() functionality. This new behavior is more complete and consistent, but changes

behavior in some cases, so a new major version is warranted. For more discussion on the topic refer to PR #142
and Issue #138

2.1 (8/16/21)

» Updated to work with pandas 1.3
* Raise minimum python to 3.7

* NYSE calendar valid from 1885 to present. Includes all full day closes, early closes, and late opens. PR #141

20 Chapter 8. Updates

https://github.com/rsheftel/pandas_market_calendars/pull/166
https://github.com/rsheftel/pandas_market_calendars/issues/164
https://github.com/rsheftel/pandas_market_calendars/pull/150
https://github.com/Stryder-Git
https://github.com/rsheftel/pandas_market_calendars/pull/142
https://github.com/rsheftel/pandas_market_calendars/issues/138

pandas_market_calendars

2.0.1 (5/20/21)

* Fixed the TSE calendar for Christmas falling on a Saturday

2.0 (5/8/21)

This version replaces the trading_calendars integration with exchange_calendars, closing out#120. exchange_calendars
if the fork of trading_calendars that is currently actively maintained. trading_calendars is now abandoned because it’s
corporate sponsor is out of business and gone.

1.7 (5/6/21)

This version eliminated the generic CMEExchangeCalendar. This calendar did not represent a specific market and thus
was not appropriate for any use. With the addition of the specific calendars for product types this is no longer needed
and is removed. To see the product specific calendars here: https://pandas-market-calendars.readthedocs.io/en/latest/
calendars.html#futures-calendars

For the CMEEquityExchangeCalendar, this no longer is a mirror of the NYSE calendar as some of the holidays for the
NYSE are an open day with early close for CME. This calendar now has its own set of holiday assumptions. This may
cause some holidays missing until this calendar is fully tested and vetted.

1.6.2 (5/6/21)

* Fix UK Holidays for #130

» Fix CME Bond calendar for Good Friday #132
1.6.1 (11/3/20)

* Add trading breaks to the trading_calendars import mirror
* Fix the CFE calendar for Good Friday #116

¢ Renamed XBOM to BSE to avoid conflict with trading_calendars

1.6 (9/14/20)

This is the first version of the merge of this project with the quantopian trading-calendars.
* Added the trading_calendars.py module that brings in all current and future calendars from the quantopian project

 All calendars from trading-calendars are now available in pandas_market_calendars

1.5 (8/30/20)

* Add the is_open_now() function
¢ Add TASE calendar from #114

* Holiday calendar is now cached to improve performance #117

8.1. Change Log 21

https://github.com/gerrymanoim/exchange_calendars
https://pandas-market-calendars.readthedocs.io/en/latest/calendars.html#futures-calendars
https://pandas-market-calendars.readthedocs.io/en/latest/calendars.html#futures-calendars

pandas_market_calendars

1.4.2 (8/11/20)

* Fixed for changes to pandas 1.1.0

1.4.1 (7/22/20)

¢ Added CME_Bond calendar for bond and interest rate futures

* Added futures specific items to the documentations along with examples with breaks

1.4 (7/11/20)
* Add the concept of a break during the trading day. For example this can accommodate Asian markets that have
a lunch break, or futures markets that are open 24 hours with a break in the day for trade processing.

* Added product specific contract calendars for CME futures exchange. First calendars are the CME Agricultural
and CME Equity calendars

* Add ability to set time zone on schedule() function #42
* Add the Bombay exchange (XBOM) from #96
* Fixed Christmas holidays in SIX #100

1.3 (4/23/20)

* Fixes to support Pandas v1.0

* Remove support for Python 3.4 based on underlying packages removing support for v3.4
¢ Added ASXExchangeCalendar from PR #85

¢ Fixes to UK holidays in #84

1.2 (10/22/19)

* Support calendars with valid business days on the weekend (PR #75)
Fixed SSE 2019 labour’s day holidays (PR #74)
Better JPX calendar support for the time period 1949-2099 (PR #72)

* Reformat Japan’s Ascension days, removed duplicate days (PR #68)
Added German national holidays (PR #77)

1.1 (5/3119)

 add JPX Ascension Day holidays for 2019 from PR #64

22 Chapter 8. Updates

pandas_market_calendars

1.0 (3/26/19)

* Official move to Python3 only support

* Version moved to 1.0 as the package has been around and stable long enough to warrant a 1.0
0.22 (3/25/19)

* Added Shanghai Stock Exchange (SSE) calendar from PR #58

¢ Added HKEX calendar from PR #61

* Fixed tests for pandas v0.24 and higher
0.21 (12/2/18)

* Added Oslo Stock Exchange (OSE) calendar

* Added GW Bush Holiday to NYSE calendar from PR #53 and #54
0.20 (7/2/18)

¢ Improvements in the internals for how calendars are registered and aliased thanks for PR #45

0.19 (7/2/18)

¢ schedule() method no longer raises exception if there are no valid trading days between start_date and end_date,
will now return an empty DataFrame

0.18 (6/8/18)

* Changed NYSE holiday calendar to start 1/1/1900 (was previously 1/1/1970).

* Fixed an error that schedule() method would fail if the end date was prior to 1993
0.17 (5/24/18)

* Added SIX (Swiss Exchange) calendar, Pull Request #36

0.16 (5/12/18)

* Fixed the equinox for Japanese calendar, Pull Request #33

¢ Fixed Victoria Day for TSX, issue #34

8.1. Change Log 23

pandas_market_calendars

0.15 (2/23/18)

* Removed toolz as a required package and removed from the one test that required it

* Added daily closes on NYSE back to 1928 from PR #30 thanks to @pldrouin

0.14 (1/7/18)

* Made default open and close times time-zone aware

0.13 (1/5/18)

¢ Corrected JPX calendar for issue #22

0.12 (12/10/17)

¢ Added new JPX calendar thanks to gabalese from PR #21

0.11 (10/30/17)

* Corrected the NYSE calendar for Independence Day on Thursday post 2013 to fix #20

* Added new convert_freq() function to convert a date_range to a lower frequency to fix #19

0.10 (9/12/17)

* Added open_time_default and close_time_default as abstract property methods to fix #17

0.9 (9/12/17)

e Fix #12 to Eurex calendar

0.8 (8/24/17)

* Fix #10 to make merge_schedules work properly for more than 2 markets

0.7 (5/30/17)

* Fix a couple deprecated imports

24 Chapter 8.

Updates

pandas_market_calendars

0.6 (3/31/17)

* Added coveralls.io test coverage

0.5 (3/27/17)

* Added Python2.7 support

0.4

* Fixed bug #5

0.3

¢ Added Eurex calendar

0.2

¢ Fix to allow start_date and end_date to be the same in schedule()

0.1

e Initial version

8.1. Change Log

25

pandas_market_calendars

26 Chapter 8. Updates

CHAPTER
NINE

9.1 Calendar Status

9.1.1 Equity Market Calendars

MARKETS & EXCHANGES

Type Name Class Unit Tests Creator
Exchange NYSE NYSEExchangeCalendar Yes Quantopian
Exchange LSE LSEExchangeCalendar Yes Quantopian
Exchange CME CMEExchangeCalendar Yes Quantopian
Exchange ICE ICEExchangeCalendar Yes Quantopian
Exchange CFE CFEExchangeCalendar Yes Quantopian
Exchange BMF BMFExchangeCalendar Quantopian
Exchange TSX TSXExchangeCalendar Yes Quantopian
Exchange EUREX EUREXExchangeCalendar Yes kewlfft
Exchange JPX JPXExchangeCalendar Yes gabalese
Exchange SIX SIXExchangeCalendar Yes oliverfu89
Exchange OSE OSEExchangeCalendar Yes busteren
Exchange SSE SSEExchangeCalendar Yes keli
Exchange TASE TASEExchangeCalendar gabglus
Exchange HKEX = HKEXExchangeCalendar Yes 1dot75cm
Exchange ASX ASXExchangeCalendar pulledlamb
Exchange BSE BSEExchangeCalendar rakesh1988
Exchange IEX IEXExchangeCalendar Yes carterjfulcher

9.1.2 Futures Calendars

Ex- Name Class Unit Creator

change Tests

CME CME_Equity CMEEquityExchangeCalendar Yes rsheftel

CME CME_Bond CMEBondExchangeCalendar Yes rsheftel

CME CME_Agriculture =~ CMEAgriculturalExchangeCalen- Yes lionelyoung

dar
CME CME Globex CMEGlobexCryptoExchangeCal- Yes Coinbase Asset Manage-
Crypto endar ment
EUREX EUREX_Bond EUREXFixedIncomeCalendar Yes rundef

27

pandas_market_calendars

9.1.3 Bond Market Calendars

Country Name Class Unit Tests Creator
UsS SIFMAUS SIFMAUSExchangeCalendar Yes
UK SIFMAUK SIFMAUKExchangeCalendar Yes
Jp SIFMAJP SIFMAJPExchangeCalendar Yes

9.1.4 Exchange Calendars Package

pandas_market_calendars now imports and provides access to all the calendars in exchange_calendars

Use the ISO code on the trading_calendars page for those calendars. Many of the calendars are duplicated between the
pandas_market_calendars and trading_calendars projects. Use whichever one you prefer.

28 Chapter 9. Markets & Exchanges

https://github.com/gerrymanoim/exchange_calendars

CHAPTER
TEN

PACKAGE CONTENTS

10.1 pandas_market_calendars

10.1.1 pandas_market_calendars package

Submodules
pandas_market_calendars.calendar_registry module
pandas_market_calendars.calendar_registry.get_calendar (name, open_time=None, close_time=None)
— MarketCalendar
Retrieves an instance of an MarketCalendar whose name is given.
Parameters
* name — The name of the MarketCalendar to be retrieved.

* open_time — Market open time override as datetime.time object. If None then default is
used.

* close_time — Market close time override as datetime.time object. If None then default is
used.

Returns
MarketCalendar of the desired calendar.

pandas_market_calendars.calendar_registry.get_calendar_names()
All Market Calendar names and aliases that can be used in “factory” :return: list(str)

pandas_market_calendars.calendar_utils module

Utilities to use with market_calendars

pandas_market_calendars.calendar_utils.convert_f£freq(index, frequency)

Converts a DateTimelndex to a new lower frequency
Parameters
* index — DateTimeIndex
 frequency - frequency string

Returns
DateTimelndex

29

pandas_market_calendars

pandas_market_calendars.calendar_utils.merge_schedules (schedules, how='outer")

Given a list of schedules will return a merged schedule. The merge method (how) will either return the superset
of any datetime when any schedule is open (outer) or only the datetime where all markets are open (inner)

CAVEATS:
¢ This does not work for schedules with breaks, the break information will be lost.

¢ Only “market_open” and “market_close” are considered, other market times are not yet supported.

Parameters
» schedules — list of schedules
* how — outer or inner

Returns
schedule DataFrame

pandas_market_calendars.class_registry module

class pandas_market_calendars.class_registry.ProtectedDict (*args, **kwargs)
Bases: dict

copy () — a shallow copy of D

class pandas_market_calendars.class_registry.RegisteryMeta(name, bases, attr)

Bases: type

Metaclass used to register all classes inheriting from RegisteryMeta
pandas_market_calendars.exchange_calendar_asx module
pandas_market_calendars.exchange_calendar_bmf module
pandas_market_calendars.exchange_calendar_cfe module
pandas_market_calendars.exchange_calendar_cme module
pandas_market_calendars.exchange_calendar_eurex module
pandas_market_calendars.exchange_calendar_hkex module
pandas_market_calendars.exchange_calendar_ice module
pandas_market_calendars.exchange_calendar_jpx module
pandas_market_calendars.exchange_calendar_Ise module
pandas_market_calendars.exchange_calendar_nyse module
pandas_market_calendars.exchange_calendar_ose module

pandas_market_calendars.exchange_calendar_six module

30 Chapter 10. Package Contents

pandas_market_calendars

pandas_market_calendars.exchange_calendar_sse module
pandas_market_calendars.exchange_calendar_tase module
pandas_market_calendars.exchange_calendar_tsx module
pandas_market_calendars.exchange_calendar_xbom module
pandas_market_calendars.holidays_cn module
pandas_market_calendars.holidays_jp module
pandas_market_calendars.holidays_oz module
pandas_market_calendars.holidays_uk module
pandas_market_calendars.holidays_us module
pandas_market_calendars.jpx_equinox module
pandas_market_calendars.market_calendar module

class pandas_market_calendars.market_calendar.DEFAULT

Bases: object

class pandas_market_calendars.market_calendar.MarketCalendar (open_time=None,
close_time=None)

Bases: object

An MarketCalendar represents the timing information of a single market or exchange. Unless otherwise noted
all times are in UTC and use Pandas data structures.

Parameters

* open_time — Market open time override as datetime.time object. If None then default is
used.

* close_time — Market close time override as datetime.time object. If None then default is
used.

add_time (market_time, times, opens=<class 'pandas_market_calendars.market_calendar. DEFAULT'>)

Adds the specified market time to regular_market_times and makes the necessary adjustments.
Parameters
» market_time — the market_time to add
* times — the time information
* opens - see .change_time docstring

Returns
None

property adhoc_holidays

Returns
list of ad-hoc holidays

10.1. pandas_market_calendars 31

pandas_market_calendars

property break_end

Break time end. If None then there is no break

Returns
time or None

break_end_on(date)
property break_start
Break time start. If None then there is no break

Returns
time or None

break_start_on(date)

classmethod calendar_names()

All Market Calendar names and aliases that can be used in “factory” :return: list(str)

change_time (market_time, times, opens=<class 'pandas_market_calendars.market_calendar. DEFAULT'>)

Changes the specified market time in regular_market_times and makes the necessary adjustments.
Parameters
» market_time — the market_time to change
¢ times — new time information

» opens — whether the market_time is a time that closes or opens the market this is only
needed if the market_time should be respected by .open_at_time True: opens False:
closes None: consider it neither opening nor closing, don’t add to open_close_map
(ignore in .open_at_time) DEFAULT: same as None, unless the market_time is in
self.__class__.open_close_map. Then it will take

the default value as defined by the class.

Returns
None

clean_dates (start_date, end_date)

Strips the inputs of time and time zone information
Parameters
e start_date — start date
* end_date - end date

Returns
(start_date, end_date) with just date, no time and no time zone

property close_offset

Returns
close offset

property close_time

Default close time for the market

Returns
time

32 Chapter 10. Package Contents

pandas_market_calendars

close_time_on(date)
days_at_time (days, market_time, day_offset=0)
Create an index of days at time t, interpreted in timezone tz. The returned index is localized to UTC.

In the example below, the times switch from 13:45 to 12:45 UTC because March 13th is the daylight savings
transition for US/Eastern. All the times are still 8:45 when interpreted in US/Eastern.

>>> import pandas as pd; import datetime; import pprint
>>> dts = pd.date_range('2016-03-12"', '2016-03-14"')
>>> dts_at_845 = days_at_time(dts, datetime.time(8, 45), 'US/Eastern')
>>> pprint.pprint([str(dt) for dt in dts_at_845])
['2016-03-12 13:45:00+00:00"',
'2016-03-13 12:45:00+00:00',
'2016-03-14 12:45:00+00:00']

Parameters
¢ days — Datetimelndex An index of dates (represented as midnight).
» market_time — datetime.time The time to apply as an offset to each day in days.
» day_offset — int The number of days we want to offset @days by

Returns

pd.Series of date with the time requested.

early_closes(schedule)

Get a DataFrame of the dates that are an early close.

Parameters
schedule — schedule DataFrame

Returns
schedule DataFrame with rows that are early closes

classmethod factory(name, *args, **kwargs)

Parameters
* cls(RegisteryMeta) - registration meta class
¢ name(str) — name of class that needs to be instantiated
¢ args(Optional (tuple)) - instance positional arguments
» kwargs(Optional(dict)) — instance named arguments

Returns
class instance

get_offset (market_time)
get_special_times (market_time)
get_special_times_adhoc (market_time)
get_time (market_time, all_times=False)

get_time_on(market_time, date)

10.1. pandas_market_calendars 33

pandas_market_calendars

property has_custom
property has_discontinued

holidays()

Returns the complete CustomBusinessDay object of holidays that can be used in any Pandas function that
take that input.

Returns
CustomBusinessDay object of holidays

property interruptions
This needs to be a list with a tuple for each date that had an interruption. The tuple should have this layout:

(date, start_time, end_time[, start_time2, end_time2, ...])
Eg: [

(“2002-02-03”, (time(11), -1), time(11, 2)), (“2010-01-11”, time(11), (time(11, 1), 1)), (“2010-
01-13”, time(9, 59), time(10), time(10, 29), time(10, 30)), (“2011-01-10", time(11), time(11, 1))

]

The date needs to be a string in this format: ‘yyyy-mm-dd’. Times need to be two datetime.time objects
for each interruption, indicating start and end.

Optionally these can be wrapped in a tuple, where the second element needs to be an integer
indicating an offset.

On “2010-01-13” in the example, it is shown that there can be multiple interruptions in a day.

property interruptions_df

Will return a pd.DataFrame only containing interruptions.
is_custom(market_time)
is_different (col, diff=None)
is_discontinued (market_time)
is_open_now (schedule, include_close=False, only_rth=False)

To determine if the current local system time (converted to UTC) is an open time for the market

Parameters
¢ schedule - schedule DataFrame

¢ include_close - if False then the function will return False if the current local system
time is equal to the closing timestamp. If True then it will return True if the current local
system time is equal to the closing timestamp. Use True if using bars and would like to
include the last bar as a valid open date and time.

e only_rth — whether to consider columns that are before market_open or after mar-
ket_close

Returns
True if the current local system time is a valid open date and time, False if not

late_opens (schedule)
Get a DataFrame of the dates that are an late opens.

Parameters
schedule — schedule DataFrame

34 Chapter 10. Package Contents

pandas_market_calendars

Returns
schedule DataFrame with rows that are late opens

property market_times
abstract property name
Name of the market

Returns
string name

open_at_time (schedule, timestamp, include_close=False, only_rth=False)

Determine if a given timestamp is during an open time for the market. If the timestamp is before the first
open time or after the last close time of schedule, a ValueError will be raised.

Parameters
¢ schedule — schedule DataFrame

e timestamp — the timestamp to check for. Assumed to be UTC, if it doesn’t include tz
information.

* include_close - if False then the timestamp that equals the closing timestamp will return
False and not be considered a valid open date and time. If True then it will be considered
valid and return True. Use True if using bars and would like to include the last bar as a
valid open date and time. The close refers to the latest market_time available, which could
be after market_close (e.g. ‘post’).

« only_rth — whether to ignore columns that are before market_open or after market_close.
If true, include_close will be referring to market_close.

Returns
True if the timestamp is a valid open date and time, False if not

open_close_map = {'break_end': True, 'break_start': False, 'market_close': False,
'market_open': True, 'post': False, 'pre': True}

property open_offset

Returns
open offset

property open_time

Default open time for the market

Returns
time

open_time_on(date)
property regular_holidays

Returns
pd.AbstractHolidayCalendar: a calendar containing the regular holidays for this calendar
regular_market_times = {'market_close': ((None, datetime.time(23, 0)),),
'market_open': ((None, datetime.time(0, 0)),)}

remove_time (market_time)

Removes the specified market time from regular_market_times and makes the necessary adjustments.

10.1. pandas_market_calendars 35

pandas_market_calendars

Parameters
market_time — the market_time to remove

Returns
None

schedule (start_date, end_date, tz="UTC', start="market_open', end="market_close’',
force_special_times=True, market_times=None, interruptions=False)

Generates the schedule DataFrame. The resulting DataFrame will have all the valid business days as the
index and columns for the requested market times. The columns can be determined either by setting a
range (inclusive on both sides), using start and end, or by passing a list to “market_times’. A range of
market_times is derived from a list of market_times that are available to the instance, which are sorted
based on the current regular time. See examples/usage.ipynb for demonstrations.

All time zones are set to UTC by default. Setting the tz parameter will convert the columns to the desired
timezone, such as ‘America/New_York’.

Parameters
¢ start_date — first date of the schedule
¢ end_date — last date of the schedule
¢ tz — timezone that the columns of the returned schedule are in, default: “UTC”
* start - the first market_time to include as a column, default: “market_open”
¢ end — the last market_time to include as a column, default: “market_close”

» force_special_times — how to handle special times. True: overwrite regular times of
the column itself, conform other columns to special times of

market_open/market_close if those are requested.

False: only overwrite regular times of the column itself, leave others alone None: com-
pletely ignore special times

* market_times — alternative to start/end, list of market_times that are in
self.regular_market_times

¢ interruptions — bool, whether to add interruptions to the schedule, default: False These
will be added as columns to the right of the DataFrame. Any interruption on a day between
start_date and end_date will be included, regardless of the market_times requested. Also,
force_special_times does not take these into consideration.

Returns
schedule DataFrame

property special_closes

A list of special close times and corresponding HolidayCalendars.

Returns
List of (time, AbstractHolidayCalendar) tuples

property special_closes_adhoc
Returns

List of (time, DatetimeIndex) tuples that represent special closes that cannot be codified into
rules.

special_dates (market_time, start_date, end_date, filter_holidays=True)

Calculate a datetimeindex that only contains the specail times of the requested market time.

36 Chapter 10. Package Contents

pandas_market_calendars

Parameters
* market_time — market_time reference
e start_date — first possible date of the index
* end_date — last possible date of the index

e filter_holidays — will filter days by self.valid_days, which can be useful when debug-
ging
Returns
schedule DatetimeIlndex

property special_market_close

A list of special close times and corresponding HolidayCalendars.

Returns
List of (time, AbstractHolidayCalendar) tuples

property special_market_close_adhoc

Returns

List of (time, DatetimeIndex) tuples that represent special closes that cannot be codified into
rules.

property special_market_open
A list of special open times and corresponding AbstractHolidayCalendar.

Returns
List of (time, AbstractHolidayCalendar) tuples

property special_market_open_adhoc

Returns

List of (time, DatetimeIndex) tuples that represent special opens that cannot be codified into
rules.

property special_opens
A list of special open times and corresponding AbstractHolidayCalendar.

Returns
List of (time, AbstractHolidayCalendar) tuples

property special_opens_adhoc

Returns

List of (time, Datetimelndex) tuples that represent special opens that cannot be codified into
rules.

abstract property tz
Time zone for the market.

Returns
timezone

valid_days (start_date, end_date, tz="UTC")

Get a DatetimelIndex of valid open business days.
Parameters
* start_date — start date

¢ end_date — end date

10.1. pandas_market_calendars 37

pandas_market_calendars

* tz —time zone in either string or pytz.timezone

Returns
Datetimelndex of valid business days

property weekmask

class pandas_market_calendars.market_calendar.MarketCalendarMeta (name, bases, namespace, /,
*kkwargs)

Bases: ABCMeta, RegisterylMeta

pandas_market_calendars.trading_calendars_mirror module
Module contents

class pandas_market_calendars.MarketCalendar (open_time=None, close_time=None)
Bases: object

An MarketCalendar represents the timing information of a single market or exchange. Unless otherwise noted
all times are in UTC and use Pandas data structures.

Parameters

* open_time — Market open time override as datetime.time object. If None then default is
used.

* close_time — Market close time override as datetime.time object. If None then default is
used.

add_time (market_time, times, opens=<class 'pandas_market_calendars.market_calendar. DEFAULT'>)

Adds the specified market time to regular_market_times and makes the necessary adjustments.
Parameters
¢ market_time — the market_time to add
* times — the time information
* opens — see .change_time docstring

Returns
None

property adhoc_holidays

Returns
list of ad-hoc holidays

property break_end

Break time end. If None then there is no break

Returns
time or None

break_end_on(date)
property break_start
Break time start. If None then there is no break

Returns
time or None

38 Chapter 10. Package Contents

pandas_market_calendars

break_start_on(date)
classmethod calendar_names()
All Market Calendar names and aliases that can be used in “factory” :return: list(str)

change_time (market_time, times, opens=<class 'pandas_market_calendars.market_calendar. DEFAULT'>)

Changes the specified market time in regular_market_times and makes the necessary adjustments.
Parameters
¢ market_time — the market_time to change
* times — new time information

» opens — whether the market_time is a time that closes or opens the market this is only
needed if the market_time should be respected by .open_at_time True: opens False:
closes None: consider it neither opening nor closing, don’t add to open_close_map
(ignore in .open_at_time) DEFAULT: same as None, unless the market_time is in
self.__class__.open_close_map. Then it will take

the default value as defined by the class.

Returns
None

clean_dates (start_date, end_date)

Strips the inputs of time and time zone information
Parameters
e start_date — start date
* end_date — end date

Returns
(start_date, end_date) with just date, no time and no time zone

property close_offset

Returns
close offset

property close_time

Default close time for the market

Returns
time

close_time_on(date)
days_at_time(days, market_time, day_offset=0)
Create an index of days at time t, interpreted in timezone tz. The returned index is localized to UTC.

In the example below, the times switch from 13:45 to 12:45 UTC because March 13th is the daylight savings
transition for US/Eastern. All the times are still 8:45 when interpreted in US/Eastern.

>>> import pandas as pd; import datetime; import pprint

>>> dts = pd.date_range('2016-03-12', '2016-03-14"')

>>> dts_at_845 = days_at_time(dts, datetime.time(8, 45), 'US/Eastern')
>>> pprint.pprint([str(dt) for dt in dts_at_845])

['2016-03-12 13:45:00+00:00",

(continues on next page)

10.1. pandas_market_calendars 39

pandas_market_calendars

(continued from previous page)

'2016-03-13 12:45:00+00:00',
'2016-03-14 12:45:00+00:00']

Parameters
¢ days — Datetimelndex An index of dates (represented as midnight).
* market_time — datetime.time The time to apply as an offset to each day in days.
¢ day_offset — int The number of days we want to offset @days by

Returns

pd.Series of date with the time requested.

early_closes(schedule)

Get a DataFrame of the dates that are an early close.

Parameters
schedule — schedule DataFrame

Returns
schedule DataFrame with rows that are early closes

classmethod factory(name, *args, **kwargs)

Parameters
¢ cls(RegisteryMeta) — registration meta class
¢ name (str) — name of class that needs to be instantiated
¢ args(Optional (tuple)) — instance positional arguments
» kwargs(Optional(dict)) — instance named arguments

Returns
class instance

get_offset (market_time)
get_special_times(market_time)
get_special_times_adhoc (market_time)
get_time (market_time, all_times=False)
get_time_on(market_time, date)
property has_custom

property has_discontinued

holidays()
Returns the complete CustomBusinessDay object of holidays that can be used in any Pandas function that
take that input.

Returns
CustomBusinessDay object of holidays

40 Chapter 10. Package Contents

pandas_market_calendars

property interruptions
This needs to be a list with a tuple for each date that had an interruption. The tuple should have this layout:

(date, start_time, end_time[, start_time2, end_time2, ...])
Eg: [

(“2002-02-03”, (time(11), -1), time(11, 2)), (“2010-01-11”, time(11), (time(11, 1), 1)), (“2010-
01-13”, time(9, 59), time(10), time(10, 29), time(10, 30)), (“2011-01-10", time(11), time(11, 1))

]

The date needs to be a string in this format: ‘yyyy-mm-dd’. Times need to be two datetime.time objects
for each interruption, indicating start and end.

Optionally these can be wrapped in a tuple, where the second element needs to be an integer
indicating an offset.

On “2010-01-13” in the example, it is shown that there can be multiple interruptions in a day.

property interruptions_df
Will return a pd.DataFrame only containing interruptions.

is_custom(market_time)
is_different (col, diff=None)
is_discontinued (market_time)
is_open_now(schedule, include_close=False, only_rth=False)
To determine if the current local system time (converted to UTC) is an open time for the market
Parameters

¢ schedule — schedule DataFrame

¢ include_close - if False then the function will return False if the current local system
time is equal to the closing timestamp. If True then it will return True if the current local
system time is equal to the closing timestamp. Use True if using bars and would like to
include the last bar as a valid open date and time.

e only_rth - whether to consider columns that are before market_open or after mar-
ket_close

Returns
True if the current local system time is a valid open date and time, False if not

late_opens (schedule)

Get a DataFrame of the dates that are an late opens.

Parameters
schedule — schedule DataFrame

Returns
schedule DataFrame with rows that are late opens

property market_times
abstract property name
Name of the market

Returns
string name

10.1. pandas_market_calendars 41

pandas_market_calendars

open_at_time (schedule, timestamp, include_close=False, only_rth=False)

Determine if a given timestamp is during an open time for the market. If the timestamp is before the first
open time or after the last close time of schedule, a ValueError will be raised.

Parameters
¢ schedule — schedule DataFrame

e timestamp — the timestamp to check for. Assumed to be UTC, if it doesn’t include tz
information.

¢ include_close - if False then the timestamp that equals the closing timestamp will return
False and not be considered a valid open date and time. If True then it will be considered
valid and return True. Use True if using bars and would like to include the last bar as a
valid open date and time. The close refers to the latest market_time available, which could
be after market_close (e.g. ‘post’).

¢ only_rth — whether to ignore columns that are before market_open or after market_close.
If true, include_close will be referring to market_close.

Returns
True if the timestamp is a valid open date and time, False if not

open_close_map = {'break_end': True, 'break_start': False, 'market_close': False,
'market_open': True, 'post': False, 'pre': True}

property open_offset

Returns
open offset

property open_time
Default open time for the market
Returns
time
open_time_on(date)
property regular_holidays
Returns
pd.AbstractHolidayCalendar: a calendar containing the regular holidays for this calendar
regular_market_times = {'market_close': ((None, datetime.time(23, 0)),),

'market_open': ((None, datetime.time(®, 0)),)}

remove_time (market_time)
Removes the specified market time from regular_market_times and makes the necessary adjustments.

Parameters
market_time — the market_time to remove

Returns
None

schedule (start_date, end_date, tz='"UTC', start="market_open', end="market_close’,
force_special_times=True, market_times=None, interruptions=False)

Generates the schedule DataFrame. The resulting DataFrame will have all the valid business days as the
index and columns for the requested market times. The columns can be determined either by setting a
range (inclusive on both sides), using start and end, or by passing a list to “market_times’. A range of

42 Chapter 10. Package Contents

pandas_market_calendars

market_times is derived from a list of market_times that are available to the instance, which are sorted
based on the current regular time. See examples/usage.ipynb for demonstrations.

All time zones are set to UTC by default. Setting the tz parameter will convert the columns to the desired
timezone, such as ‘America/New_York’.

Parameters
¢ start_date — first date of the schedule
¢ end_date — last date of the schedule
¢ tz — timezone that the columns of the returned schedule are in, default: “UTC”
e start - the first market_time to include as a column, default: “market_open”
¢ end — the last market_time to include as a column, default: “market_close”

» force_special_times — how to handle special times. True: overwrite regular times of
the column itself, conform other columns to special times of

market_open/market_close if those are requested.

False: only overwrite regular times of the column itself, leave others alone None: com-
pletely ignore special times

e market_times - alternative to start/end, list of market times that are in
self.regular_market_times

interruptions —bool, whether to add interruptions to the schedule, default: False These
will be added as columns to the right of the DataFrame. Any interruption on a day between
start_date and end_date will be included, regardless of the market_times requested. Also,
force_special_times does not take these into consideration.

Returns
schedule DataFrame

property special_closes
A list of special close times and corresponding HolidayCalendars.

Returns
List of (time, AbstractHolidayCalendar) tuples

property special_closes_adhoc

Returns
List of (time, DatetimeIndex) tuples that represent special closes that cannot be codified into
rules.

special_dates (market_time, start_date, end_date, filter_holidays=True)
Calculate a datetimeindex that only contains the specail times of the requested market time.

Parameters
* market_time — market_time reference
¢ start_date — first possible date of the index
¢ end_date - last possible date of the index

e filter_holidays — will filter days by self.valid_days, which can be useful when debug-
ging
Returns
schedule DatetimeIndex

10.1. pandas_market_calendars 43

pandas_market_calendars

property special_market_close

A list of special close times and corresponding HolidayCalendars.

Returns
List of (time, AbstractHolidayCalendar) tuples

property special_market_close_adhoc

Returns
List of (time, Datetimelndex) tuples that represent special closes that cannot be codified into
rules.

property special_market_open

A list of special open times and corresponding AbstractHolidayCalendar.

Returns
List of (time, AbstractHolidayCalendar) tuples

property special_market_open_adhoc

Returns
List of (time, DatetimelIndex) tuples that represent special opens that cannot be codified into
rules.

property special_opens
A list of special open times and corresponding AbstractHolidayCalendar.

Returns
List of (time, AbstractHolidayCalendar) tuples

property special_opens_adhoc

Returns
List of (time, Datetimelndex) tuples that represent special opens that cannot be codified into
rules.

abstract property tz

Time zone for the market.

Returns
timezone

valid_days (start_date, end_date, tz='"UTC")
Get a DatetimeIndex of valid open business days.

Parameters
e start_date — start date
* end_date — end date
* tz — time zone in either string or pytz.timezone

Returns
Datetimelndex of valid business days

property weekmask
pandas_market_calendars.convert_freq(index, frequency)
Converts a DateTimeIndex to a new lower frequency

Parameters

44 Chapter 10. Package Contents

pandas_market_calendars

¢ index — DateTimelIndex
» frequency - frequency string

Returns
DateTimelndex

pandas_market_calendars.get_calendar (name, open_time=None, close_time=None) — MarketCalendar
Retrieves an instance of an MarketCalendar whose name is given.
Parameters

¢ name — The name of the MarketCalendar to be retrieved.

* open_time — Market open time override as datetime.time object. If None then default is
used.

* close_time — Market close time override as datetime.time object. If None then default is
used.

Returns
MarketCalendar of the desired calendar.

pandas_market_calendars.get_calendar_names()

All Market Calendar names and aliases that can be used in “factory” :return: list(str)

pandas_market_calendars.merge_schedules (schedules, how="outer")

Given a list of schedules will return a merged schedule. The merge method (how) will either return the superset
of any datetime when any schedule is open (outer) or only the datetime where all markets are open (inner)

CAVEATS:
¢ This does not work for schedules with breaks, the break information will be lost.

¢ Only “market_open” and “market_close” are considered, other market times are not yet supported.

Parameters
e schedules — list of schedules
* how — outer or inner

Returns
schedule DataFrame

10.1. pandas_market_calendars 45

pandas_market_calendars

46 Chapter 10. Package Contents

CHAPTER
ELEVEN

EXAMPLES

import sys

sys.path.append("../™")

from datetime import time

import pandas as pd

import pandas_market_calendars as mcal

11.1 Calendars

11.1.1 Basic Usage

Setup new exchange calendar

[nyse = mcal.get_calendar('NYSE")

Get the time zone

[nyse .tz.zone

['America/New_York'

Get the AbstractHolidayCalendar object

holidays = nyse.holidays()
holidays.holidays[-5:]

(numpy .datetime64('2200-06-19"),
numpy .datetime64('2200-07-04"),
numpy .datetime64('2200-09-01"),
numpy .datetime64('2200-11-27"),
numpy .datetime64 ('2200-12-25"))

View the available information on regular market times

[print(nyse.regular_market_times) # more on this under the 'Customizations' heading

47

pandas_market_calendars

ProtectedDict(
{'pre': ((None, datetime.time(4, 0)),),
'market_open': ((None, datetime.time(10, 0)),
('1985-01-01", datetime.time(9, 30))),
'market_close': ((None, datetime.time(15, 0)),
('1952-09-29", datetime.time(15, 30)),
('1974-01-01", datetime.time(l6, 0))),
'post': ((None, datetime.time(20, 0)),)}
)

Exchange open valid business days

Get the valid open exchange business dates between a start and end date. Note that Dec 26 (Christmas), Jan 2 (New
Years) and all weekends are missing

[nyse.valid_days(start_date:'2®16—12—2®', end_date="2017-01-10") }

DatetimeIndex(['2016-12-20 00:00:00+00:00', '2016-12-21 00:00:00+00:00",
'2016-12-22 00:00:00+00:00', '2016-12-23 00:00:00+00:00"',
'2016-12-27 00:00:00+00:00', '2016-12-28 00:00:00+00:00"',
'2016-12-29 00:00:00+00:00', '2016-12-30 00:00:00+00:00"',
'2017-01-03 00:00:00+00:00', '2017-01-04 00:00:00+00:00"',
'2017-01-05 00:00:00+00:00', '2017-01-06 00:00:00+00:00"',
'2017-01-09 00:00:00+00:00', '2017-01-10 00:00:00+00:00'],

dtype="datetime64[ns, UTC]', freg=None)

Schedule

schedule = nyse.schedule(start_date='2016-12-30", end_date='2017-01-10")
schedule

with early closes
early = nyse.schedule(start_date='2012-07-01", end_date='2012-07-10")
early

including pre and post-market

extended = nyse.schedule(start_date='2012-07-01", end_date='2012-07-10", start="pre",.
—end="post")

extended

specific market times

CAVEAT: Looking at 2012-07-03, you can see that times will NOT be adjusted to special_
—.opens/sepcial_closes

if market_open/market_close are not requested

specific = nyse.schedule(start_date="2012-07-01"', end_date='2012-07-10"', market_times= [
—"post", "market_open"]) # this order will be kept

specific

48 Chapter 11. Examples

pandas_market_calendars

Get early closes

[nyse .early_closes(schedule=early)

[nyse .early_closes(schedule=extended)

Open at time

Test to see if a given timestamp is during market open hours. (You can find more on this under the ‘Advanced

open_at_time’ header)

nyse.open_at_time(early, pd.Timestamp('2012-07-03 12:00', tz='America/New_York'))

True

nyse.open_at_time(early, pd.Timestamp('2012-07-03 16:00', tz='America/New_York'))

False

[
[
[
[

- —_J _J _J

Other market times will also be considered

[nyse.open_at_time(extended, pd.Timestamp('2012-07-05 18:00', tz='America/New_York'))

[True

but can be ignored by setting only_rth = True

nyse.open_at_time(extended, pd.Timestamp('2012-07-05 18:00', tz="America/New_York'),.
—only_rth = True)

[False

11.2 Customizations

The simplest way to customize the market times of a calendar is by passing datetime.time objects to the constructor,

which will modify the open and/or close of regular trading hours.

cal = mcal.get_calendar('NYSE', open_time=time(10, 0), close_time=time(14, 30))
print('open, close: %s, %s' % (cal.open_time, cal.close_time))

[open, close: 10:00:00, 14:30:00

More advanced customizations can be done after initialization or by inheriting from the closest MarketCalendar class,

which requires an explanation of market times. ..

11.2. Customizations

49

pandas_market_calendars

11.2.1 Market times

Market times are moments in a trading day that are contained in the regular_market_times attribute, for example:

[print("The original NYSE calendar: \n", nyse.regular_market_times)]

The original NYSE calendar:
ProtectedDict(
{'pre': ((None, datetime.time(4, 0)),),
'market_open': ((None, datetime.time(10, 0)),
('1985-01-01", datetime.time(9, 30))),
'market_close': ((None, datetime.time(15, 0)),
('1952-09-29", datetime.time(15, 30)),
('1974-01-01", datetime.time(16, 0))),
'post': ((None, datetime.time(20, 0)),)}

)

NYSE’s regular trading hours are referenced by “market_open” and “market_close”, but NYSE also has extended hours,
which are referenced by “pre” and “post”.

The attribute “‘regular_market_times " has these requirements:
* It needs to be a dictionary
* Each market_time needs one entry
— Regular open must be “market_open”, regular close must be “market_close”.
— If there is a break, there must be a “break_start” and a “break_end”.
— only ONE break is currently supported.

* One tuple for each market_time, containing at least one tuple:

Each nested tuple needs at least two items: (first_date_used, time[, offset]).

The first tuple’s date should be None, marking the start. In every tuple thereafter this is the date when time
was first used.

Optionally (assumed to be zero, when not present), a positive or negative integer, representing an offset in
number of days.

Dates need to be in ascending order, None coming first.

E.g.:

print(nyse.get_time("market_close", all_times= True)) # all_times = False only returns.
—current

((None, datetime.time(15, 0)), ('1952-09-29', datetime.time(1l5, 30)), ('1974-01-01",.
—datetime.time(16, 0)))

The first known close was 3pm, which changed on 1952-09-29 to 3:30pm, which changed on 1974-01-01 to 4pm. The
dates are the first dates that the new time was used.

50 Chapter 11. Examples

pandas_market_calendars

Customizing after initialization

There are three methods that allow customizing the regular_market_times of a MarketCalendar instance: * .
change_time (market_time, times) * .add_time(market_time, times) * .remove_time(market_time)

cal = mcal.get_calendar("'NYSE")

cal.change_time("market_open", time(10,30))

print('open, close: %s, %s' % (cal.open_time, cal.close_time))

print ("\nThe 'market_open' information is entirely replaced:\n", cal.regular_market_
—times)

open, close: 10:30:00, 16:00:00

The 'market_open' information is entirely replaced:
ProtectedDict(
{'pre': ((None, datetime.time(4, 0)),),
'market_open': ((None, datetime.time(10, 30)),),
'market_close': ((None, datetime.time(15, 0)),
('1952-09-29', datetime.time(1l5, 30)),
('1974-01-01", datetime.time(1l6, 0))),
'post': ((None, datetime.time(20, 0)),)}
)

cal.remove_time("post™)
cal.add_time("new_post", time(19))
print(cal.regular_market_times)

ProtectedDict(
{'pre': ((None, datetime.time(4, 0)),),
'market_open': ((None, datetime.time(10, 30)),),
'market_close': ((None, datetime.time(15, 0)),
('1952-09-29', datetime.time(15, 30)),
('1974-01-01", datetime.time(l6, 0))),
'new_post': ((None, datetime.time(19, 0)),)}
)

cal.remove_time("pre")
cal.remove_time("new_post")

The methods .add_time and .change_time also accept the time information in these formats:

cal.add_time("just_time", time(10))

cal.add_time("with_offset", (time(10), -1))

cal.add_time("changes_and_offset", ((None, time(17)), ("2009-12-28", time(l1l), -2)))
print(cal.regular_market_times)

ProtectedDict(
{'market_open': ((None, datetime.time(10, 30)),),
'market_close': ((None, datetime.time(15, 0)),
('1952-09-29", datetime.time(15, 30)),
('1974-01-01", datetime.time(l6, 0))),
'just_time': ((None, datetime.time(10, 0)),),
(continues on next page)

11.2. Customizations 51

pandas_market_calendars

(continued from previous page)
'with_offset': ((None, datetime.time(10, 0), -1),),
'changes_and_offset': ((None, datetime.time(l1l7, 0)),
('2009-12-28", datetime.time(l1, 0), -2))}

CAVEATS:

FIRST

Internally, an order of market_times is detected based on their current time.

Because of the offsets in “with_offset” and “changes_and_offset”, the columns in a schedule are in the following
order:

[cal.schedule("2®®9—12—23”, "2009-12-29", market_times= "all")

On 2009-12-23 changes_and_offset doesn’t seem to be in the right order, but as of 2009-12-28 it is.

Passing a list to market_times, allows you to keep a custom order:

cal.schedule("2009-12-23", "2009-12-29", market_times= ["with_offset", "market_open",
- "market_close", "changes_and_offset"])

SECOND

Special closes of market_closes will override all later times, special opens of market_opens will override all earlier
times.

In the prior schedule, 2009-12-24 is a special market_close, which was enforced in the changes_and_offset column.

Providing False or None to the force_special_times keyword argument, changes this behaviour:

False - will only adjust the columns itself (changes_and_offset left alone, market_
—close adjusted)

cal.schedule("2009-12-23", "2009-12-28", market_times= ["changes_and_offset", "market_
—.close"], force_special_times= False)

None - will not adjust any column (both are left alone)
cal.schedule("2009-12-23", "2009-12-28", market_times= ["changes_and_offset", "market_
—close"], force_special_times= None)

52 Chapter 11. Examples

pandas_market_calendars

Inheriting from a MarketCalendar

You get even more control over a calendar (or help this package by contributing a calendar) by inheriting from a
MarketCalendar class. The following three sections cover:

* Setting special times for market_times
* Setting interruptions
“ How to make sure open_at_time works

Special Times

Any market_time in regular_market_times can have special times, which are looked for in two properties:

special_{market_time}_adhoc

same format as special_opens_adhoc, which is the same as special_market_open_adhoc
special_{market_time}

same format as special_opens, which is the same as special_market_open

For example, CFEExchangeCalendar only has the regular trading hours for the futures.
—~exchange (8:30 - 15:15).

If you want to use the equity options exchange (8:30 - 15:00), including the order.
—,acceptance time at 7:30, and

some special cases when the order acceptance time was different, do this:

from pandas_market_calendars.exchange_calendar_cboe import CFEExchangeCalendar

class DemoOptionsCalendar (CFEExchangeCalendar): # Inherit what doesn't need to change
name = "Demo_Options"
aliases = [name]
regular_market_times = {**CFEExchangeCalendar.regular_market_times, # unpack the.
—parent's regular_market_times
"order_acceptance": ((None, time(7,30)),), # add your.
—market time of interest
"market_close": ((None, time(15)),)} # overwrite the market.
—time you want to change

@property
def special_order_acceptance_adhoc(self): # include special cases
return [(time(8,30), ["2000-12-27", "2001-12-27"1)]

options = mcal.get_calendar("Demo_Options")

print (options.regular_market_times)

ProtectedDict(

{'market_open': ((None, datetime.time(8, 30)),),
'market_close': ((None, datetime.time(15, 0)),),
'order_acceptance': ((None, datetime.time(7, 30)),)}

)

11.2. Customizations 53

pandas_market_calendars

schedule = options.schedule("2000-12-22", "2000-12-28", start= "order_acceptance")
schedule

Dec 25th is filtered out already because it is inherited from the CFEExchangeCalendar, and the special case on 2000-
12-27 is also integrated

Interruptions

MarketCalendar subclasses also support interruptions, which can be defined in the interruptions property. To view
interruptions, you can use the interruptions_df property or set interruptions= True when calling schedule

class InterruptionsDemo(DemoOptionsCalendar):
@property
def interruptions(self):
return [

("2002-02-03", (time(11l), -1), time(ll, 2)),
("2010-01-11", time(11), (time(l1l, 1), 1)),
("2010-01-13", time(9, 59), time(10), time(10, 29), time(10, 30)),
("2011-01-10", time(11), time(ll, 1))]

[cal = InterruptionsDemo ()

[cal.interruptions_df

sched = cal.schedule("2010-01-09", "2010-01-15", interruptions= True)
sched

def is_open(c, s, *dates):
for t in dates:
print("open on", t,

, c.open_at_time(s, t))

Advanced open_at_time

MarketCalendar.open_at_time uses the class attribute open_close_map to determine if a market_time opens or
closes the market. It will also look for the ‘interruption_’ prefix in the columns to respect interruptions.

Here you can see that MarketCalendar.open_at_time respects interruptions (the last two timestamps):

is_open(cal, sched, "2010-01-12 14:00:00", "2010-01-12 14:35:00","2010-01-13 15:59:00",
—"2010-01-13 16:30:00")

open on 2010-01-12 14:00:00 : False
open on 2010-01-12 14:35:00 : True
open on 2010-01-13 15:59:00 : False
open on 2010-01-13 16:30:00 : True

In the DemoOptionsCalendar, we did not specify what order_acceptance means for the market, which will not allow
open_at_time to work.

54 Chapter 11. Examples

pandas_market_calendars

sched = cal.schedule("2010-01-09", "2010-01-15", start= "order_acceptance",.
—interruptions= True)
try:
cal.open_at_time(sched, "2010-01-12")
except ValueError as e:
print(e)

You seem to be using a schedule that isn't based on the market_times, or includes market_
—times that are not represented in the open_close_map.

These are the defaults that every MarketCalendar has, which is still missing order_
—accpetance.
print(cal.open_close_map)

ProtectedDict(

{'market_open': True,
'market_close': False,
'break_start': False,
'break_end': True,
'pre': True,
'post': False}

)

To correct the calendar we should include the following:

class OpenCloseDemo(InterruptionsDemo) :

open_close_map = {**CFEExchangeCalendar.open_close_map,
"order_acceptance": True}

cal = OpenCloseDemo()
sched = cal.schedule("2010-01-09", "2010-01-15", start= "order_acceptance",.

—interruptions= True)
sched

Now we can see that not only interruptions (last two) but also order_acceptance (first) is respected

is_open(cal, sched, "2010-01-11 13:35:00", "2010-01-12 14:35:00", "2010-01-13 15:59:00",
—"2010-01-13 16:30:00")

open on 2010-01-11 13:35:00 : True
open on 2010-01-12 14:35:00 : True
open on 2010-01-13 15:59:00 : False
open on 2010-01-13 16:30:00 : True

You can even change this dynamically, using the opens keyword in .change_time and .add_time

cal.change_time("order_acceptance", cal["order_acceptance"], opens= False)

is_open(cal, sched, "2010-01-11 13:35:00", "2010-01-12 14:35:00", "2010-01-13 15:59:00",
—"2010-01-13 16:30:00™)

11.2. Customizations 55

pandas_market_calendars

open on 2010-01-11 13:35:00 : False
open on 2010-01-12 14:35:00 : True
open on 2010-01-13 15:59:00 : False
open on 2010-01-13 16:30:00 : True

cal.change_time("order_acceptance", cal["order_acceptance"], opens= True)
cal.add_time("order_closed", time(8), opens= False)

sched = cal.schedule("2010-01-09", "2010-01-15", start= "order_acceptance')
sched

[is_open(cal, sched, "2010-01-11 13:35:00", "2010-01-11 14:15:00", "2010-01-11 14:35:00")]

open on 2010-01-11 13:35:00 : True
open on 2010-01-11 14:15:00 : False
open on 2010-01-11 14:35:00 : True

11.3 Extra Usage

11.3.1 Checking for special times

The following functions respect varying times in regular_market_times

These will only check market_close/market_open columns for early/late times

[options.early_closes(schedule), options.late_opens(schedule)]

(Empty DataFrame

Columns: [order_acceptance, market_open, market_close]
Index: [],

Empty DataFrame

Columns: [order_acceptance, market_open, market_close]
Index: [])

The is_different method uses the name of the series passed to it, to determine which rows are not equal to the
regular market times, and return a boolean Series

[schedule[options.is_different(schedule[”order_acceptance”])]]

You can also pass pd.Series.1lt/ -.gt / -.ge / etc. for more control over the comparison

[schedule[options.is_different(schedule["order_acceptance”], pd.Series.1t)] }

[schedule[options.is_different(schedule["order_acceptance"], pd.Series.ge)]]

56 Chapter 11. Examples

pandas_market_calendars

Checking custom times

—into the class

options.has_custom # order_acceptance is not considered custom because it is hardcoded. ’

[False]
[options.add_time(”post”, time(17))]
[options.has_custom, options.is_custom('market_open"), options.is_custom("post")]
[(True, False, True)]

Get the regular time on a certain date

—market_close

nyse.open_time, nyse.close_time # these always refer to the current time of'market_open/’

(datetime.time(9, 30, tzinfo=<DstTzInfo 'America/New_York' LMT-1 day, 19:04:00 STD>),
datetime.time(16, 0O, tzinfo=<DstTzInfo 'America/New_York' LMT-1 day, 19:04:00 STD>))

[nyse.get_time("post"), nyse.get_time("pre") # these also refer to the current time }

(datetime.time(20, 0, tzinfo=<DstTzInfo 'America/New_York' LMT-1 day, 19:04:00 STD>),
datetime.time(4, 0, tzinfo=<DstTzInfo 'America/New_York' LMT-1 day, 19:04:00 STD>))

open_time_on looks for market_open, close_time_on looks for market_close and get_time_
—on looks for the provided market time
nyse.open_time_on("1950-01-01"), nyse.get_time_on("'market_close", "1960-01-01")

(datetime.time(10, O, tzinfo=<DstTzInfo 'America/New_York' LMT-1 day, 19:04:00 STD>),
datetime.time(15, 30, tzinfo=<DstTzInfo 'America/New_York' LMT-1 day, 19:04:00 STD>))

Special Methods

[nyse[”market_open"] # gets the current time

[datetime.time(9, 30, tzinfo=<DstTzInfo 'America/New_York' LMT-1 day, 19:04:00 STD>)

[nyse["market_open", "all"] # gets all times

((None, datetime.time(10, ©)), ('1985-01-01', datetime.time(9, 30)))

-/ — J —_J —_J _J

[nyse["market_open", "1950-01-01"] # gets the time on a certain date

11.3. Extra Usage 57

pandas_market_calendars

[datetime.time(l@, 0, tzinfo=<DstTzInfo 'America/New_York' LMT-1 day, 19:04:00 STD>)

This tries to add a time, which will fail if it already exists. In that case .change_time is the explicit alternative.

nyse["new_post"] = time(20)
nyse["new_post"]

[datetime.time(Z@, 0, tzinfo=<DstTzInfo 'America/New_York' LMT-1 day, 19:04:00 STD>)

try: nyse["post"] = time(19)
except AssertionError as e: print(e)

post is already in regular_market_times:
['pre', 'market_open', 'market_close', 'post', 'new_post']

Array of special times

[options.special_dates(”order_acceptance”, "2000-12-22", "2001-12-28")

2000-12-27 2000-12-27 14:30:00+00:00
2001-12-27 2001-12-27 14:30:00+00:00
dtype: datetime64[ns, UTC]

Handling discontinued times

[xer = mcal.get_calendar ("XKRX")

/opt/hostedtoolcache/Python/3.10.9/x64/1ib/python3.10/site-packages/pandas_market_
—»calendars/market_calendar.py:144: UserWarning: ['break_start', 'break_end'] are.
—.discontinued, the dictionary .discontinued_market_times has the dates on which these.
—were discontinued. The times as of those dates are incorrect, use .remove_time(market_
—»time) to ignore a market_time.

warnings.warn(f"{list(discontinued.keys())} are discontinued, the dictionary"

[xer.schedule("2®2®—®1—®1", "2020-01-05")

xkrx.discontinued_market_times # these are the dates as of which the market time didn't.
—.exist anymore

ProtectedDict({'break_start': Timestamp('2000-05-22 00:00:00'), 'break_end': Timestamp(
—'2000-05-22 00:00:00')})

print (xkrx.has_discontinued)
xkrx.remove_time("break_start")
xkrx.remove_time("break_end")
print(xkrx.has_discontinued)

58 Chapter 11. Examples

pandas_market_calendars

True
False

[xer.schedule("2®2®—®1—®1", "2020-01-05")

11.4 Helpers

schedules with columns other than market_open, break_start, break_end or market_close are not yet supported by the
following functions

11.4.1 Date Range

This function will take a schedule DataFrame and return a Datetimelndex with all timestamps at the frequency given

for all of the exchange open dates and times.

[mcal.date_range(early, frequency="1D")

DatetimeIndex(['2012-07-02 20:00:00+00:00', '2012-07-03 17:00:00+00:00"',
'2012-07-05 20:00:00+00:00', '2012-07-06 20:00:00+00:00',
'2012-07-09 20:00:00+00:00', '2012-07-10 20:00:00+00:00'],

dtype="datetime64[ns, UTC]', freg=None)

[mcal.date_range(early, frequency="'1H")

DatetimeIndex(['2012-07-02 14:30:00+00:00', '2012-07-02 15:30:00+00:00"',
'2012-07-02 16:30:00+00:00', '2012-07-02 17:30:00+00:00',
'2012-07-02 18:30:00+00:00', '2012-07-02 19:30:00+00:00',
'2012-07-02 20:00:00+00:00', '2012-07-03 14:30:00+00:00',
'2012-07-03 15:30:00+00:00', '2012-07-03 16:30:00+00:00',
'2012-07-03 17:00:00+00:00', '2012-07-05 14:30:00+00:00',
'2012-07-05 15:30:00+00:00', '2012-07-05 16:30:00+00:00',
'2012-07-05 17:30:00+00:00', '2012-07-05 18:30:00+00:00',
'2012-07-05 19:30:00+00:00', '2012-07-05 20:00:00+00:00',
'2012-07-06 14:30:00+00:00', '2012-07-06 15:30:00+00:00',
'2012-07-06 16:30:00+00:00', '2012-07-06 17:30:00+00:00',
'2012-07-06 18:30:00+00:00', '2012-07-06 19:30:00+00:00',
'2012-07-06 20:00:00+00:00', '2012-07-09 14:30:00+00:00',
'2012-07-09 15:30:00+00:00', '2012-07-09 16:30:00+00:00',
'2012-07-09 17:30:00+00:00', '2012-07-09 18:30:00+00:00',
'2012-07-09 19:30:00+00:00', '2012-07-09 20:00:00+00:00',
'2012-07-10 14:30:00+00:00', '2012-07-10 15:30:00+00:00',
'2012-07-10 16:30:00+00:00', '2012-07-10 17:30:00+00:00',
'2012-07-10 18:30:00+00:00', '2012-07-10 19:30:00+00:00',
'2012-07-10 20:00:00+00:00'],

dtype="datetime64[ns, UTC]', freg=None)

11.4. Helpers

59

pandas_market_calendars

11.4.2 Merge schedules

NYSE Calendar

nyse = mcal.get_calendar('NYSE")

schedule_nyse = nyse.schedule('2015-12-20"', '2016-01-06")
schedule_nyse

LSE Calendar

lse = mcal.get_calendar('LSE")

schedule_lse = 1lse.schedule('2015-12-20", '2016-01-06")
schedule_lse

Inner merge

This will find the dates where both the NYSE and LSE are open. Notice that Dec 28th is open for NYSE but not LSE.
Also note that some days have a close prior to the open. This function does not currently check for that.

[mcal.merge_schedules(schedules:[schedule_nyse, schedule_lse], how="inner')

Outer merge

This will return the dates and times where either the NYSE or the LSE are open

[mcal.merge_schedules(schedules:[schedule_nyse, schedule_lse], how='outer')]

11.4.3 Use holidays in numpy

This will use your exchange calendar in numpy to add business days

import numpy as np
cme = mcal.get_calendar("CME_Agriculture")
np.busday_offset(dates="2020-05-22", holidays=cme.holidays() .holidays, offsets=1)

[numpy.datetime64('2020-05-26")

11.4.4 Trading Breaks

Some markets have breaks in the day, like the CME Equity Futures markets which are closed from 4:15 - 4:35 (NY)
daily. These calendars will have additional columns in the schedule() DataFrame

cme = mcal.get_calendar('CME_Equity")
schedule = cme.schedule('2020-01-01", '2020-01-04")
schedule

The date_range() properly accounts for the breaks

[mcal .date_range(schedule, '5H')

60 Chapter 11. Examples

pandas_market_calendars

DatetimeIndex(['2020-01-02

'2020-01-02
'2020-01-02
'2020-01-03
'2020-01-03
'2020-01-03

04:
14:

21

00
00

115
04:
14:
21:

00
00
15

:00+00:
:00+00:
:00+00:
:00+00:
:00+00:
:00+00:

00',
00',
00',
00',
00',
00',

'2020-01-02
'2020-01-02
'2020-01-02
'2020-01-03
'2020-01-03
'2020-01-03

dtype="datetime64[ns, UTC]', freg=None)

09:
19:
22:
09:
19:
22:

00
00
00
00
00
00

:00+00:
:00+00:
:00+00:
:00+00:
:00+00:
:00+00:

00',
00',
00',
00',
00',
00'1,

11.4. Helpers

61

pandas_market_calendars

62 Chapter 11. Examples

CHAPTER
TWELVE

NEW MARKET OR EXCHANGE

12.1 New Market or Exchange

See examples/usage.ipynb for demonstrations
To create a new exchange (or OTC market):
1. Create a new class that inherits from MarketCalendar
2. Set the class attribute aliases: [...] for accessing the calendar through mcal.get_calendar
3. Create the regular_market_times class attribute, meeting these requirements:
1. It needs to be a dictionary
2. Each market_time needs one entry
1. Regular open must be “market_open”, regular close must be “market_close”.
2. If there is a break, there must be a “break_start” and a “break_end”.
3. only ONE break is currently supported.
3. One tuple for each market_time, containing at least one tuple:
1. Each nested tuple needs at least two items: (first_date_used, time[, offset]).

2. The first tuple’s date should be None, marking the start. In every tuple thereafter this is the date when
time was first used.

3. Optionally (assumed to be zero, when not present), a positive or negative integer, representing an offset
in number of days.

4. Dates need to be in ascending order, None coming first.
4. Define the following property methods:
1. name
2. tz (time zone)
5. Now optionally define any of the following property methods:
1. Days where the market is fully closed:
1. regular_holidays - returns an pandas AbstractHolidayCalendar object
2. adhoc_holidays - returns a list of pandas Timestamp of a DatetimeIndex
2. Days where the market closes early:

1. special_closes - returns a list of tuples. The tuple is (datetime.time of close, AbstractHolidayCalendar)

63

pandas_market_calendars

2. special_closes_adhoc - returns a list of tuples. The tuple is (datetime.time of close, list of date strings)
3. Days where the market opens late:

1. special_opens - returns a list of tuples. The tuple is (datetime.time of open, AbstractHolidayCalendar)

2. special_opens_adhoc - returns a list of tuples. The tuple is (datetime.time of open, list of date strings)
4. Set special times for any market_time in regular_market_times, by setting a property in this format:

1. special_{market_time}_adhoc
same format as special_opens_adhoc, which is the same as special_market_open_adhoc

2. special_{market_time}
same format as special_opens, which is the same as special_market_open

5. Add interruptions:

1. interruptions - returns a list of tuples. The tuple is (date, start_time, end_timef[, start_time2, end_time2,

D

6. Import your new calendar class in calendar_registry.py:

[from .exchange_calendar_xxx import XXXExchangeCalendar

64 Chapter 12. New Market or Exchange

CHAPTER
THIRTEEN

INDICES AND TABLES

* genindex
* modindex

¢ search

65

pandas_market_calendars

66 Chapter 13. Indices and tables

P

pandas_market_calendars, 38
pandas_market_calendars.calendar_registry, 29
pandas_market_calendars.calendar_utils, 29
pandas_market_calendars.class_registry, 30
pandas_market_calendars.market_calendar, 31

PYTHON MODULE INDEX

67

pandas_market_calendars

68 Python Module Index

INDEX

A change_time () (pandas_market_calendars.market_calendar.MarketCaler
add_time () (pandas_market_calendars. market_calendar.MarketCalMﬁP d), 32
method), 31 change_time () (pandas_market_calendars.MarketCalendar
add_time () (pandas_market_calendars.MarketCalendar method), 39
method), 38 clean_dates() (pandas_market_calendars.market_calendar.MarketCaler
method), 32

adhoc_holidays (pan-
das_market_calendars.market_calendar-MarkerC§£a0dates Q) (pandas_market_calendars.MarketCalendar

property), 31 method), 39
adhoc_holidays (pan- © lose_offset (pandas_market_calendars.market_calendar.MarketCalenc
das_market_calendars.MarketCalendar property), 32

close_offset (pandas_market_calendars.MarketCalendar
property), 39
B close_time (pandas_market_calendars.market_calendar.MarketCalendar
roperty), 32
tsgcilteﬁ{g;(?pandas_market_calendars.MarketCalendar

property), 39

property), 38

break_end (pandas_market_calendars.market_calendar.M%rfg

property), 31
break_end (pandas_market_calendars.MarketCalendar

roperty), 38 close_time_on() (pan-
property), - das_market_calendars.market_calendar.MarketCalendar
break_end_on() (pan- method). 32
das_market_calendars.market_calendar.MarketCalfndar . .
close_time_on() (pan-
method), 32
das_market_calendars.MarketCalendar
break_end_on() (pan-
method), 39
das_market_calendars.MarketCalendar convert_freq() (in module an-
method), 38 —+req p

break_start (pandas_market_calendars.market_calendar.MarketCa??gdZ}arket_calerfdars)’ 44
convert_freq() (in module pan-
property), 32

break_start (pandas_market_calendars.MarketCalendar das_market_calendars. calendar_un.l), 29 .
property), 38 copy Q) (pandas_market_calendars.class_registry.ProtectedDict

break_start_on() (pan- method), 30
das_market_calendars.market_calendar.Marketh[lyndar
method), 32)
break_start_on() (pan- days-at_time() (pan-
das market calendars.MarketCalendar das_market_calendars.market_calendar.MarketCalendar
method), 38 method), 33
days_at_time() (pan-
C das_market_calendars.MarketCalendar
calendar_names() (pan- method), 39 .
DIEF ULT (class in pan-
das_market_calendars.market_calendar.MarketCalendar
class method), 32 das_market_calendars.market_calendar),
. 3
calendar_names() (pan- !
das_market_calendars.MarketCalendar class E
thod), 39
method) early_closes() (pan-

69

pandas_market_calendars

early_closes()

F

das_market_calendars.market_calendar.MarketCdlasddi scontinued

method), 33
(pan-

das_market_calendars.MarketCalendar

method), 40

has_discontinued

(pan-
das_market_calendars.market_calendar.MarketCalendar
property), 34

(pan-
das_market_calendars.MarketCalendar

property), 40

holidays() (pandas_market_calendars.market_calendar.MarketCalendar

factory(Q) (pandas_market_calendars.market_calendar.MarketCaleWﬁOd)’ 34

factory() (pandas_market_calendars.MarketCalendar

G

class method), 33

class method), 40

get_calendar() (in module pan-
das_market_calendars), 45
get_calendar() (in module pan-

das_market_calendars.calendar_registry),
29

get_calendar_names() (in module pan-
das_market_calendars), 45
get_calendar_names () (in module pan-

das_market_calendars.calendar_registry),
29

holidays () (pandas_market_calendars.MarketCalendar

method), 40

interruptions (pandas_market_calendars.market_calendar.MarketCaler
property), 34

interruptions (pandas_market_calendars.MarketCalendar
property), 40

interruptions_df (pan-
das_market_calendars.market_calendar.MarketCalendar
property), 34

interruptions_df
das_market_calendars.MarketCalendar
property), 41

is_custom() (pandas_market_calendars.market_calendar.MarketCalenda

(pan-

get_offset() (pandas_market_calendars.market_calendar.Market@ﬁfékggl)’ 34

get_offset () (pandas_market_calendars.MarketCalendar

get_special_times()
das_market_calendars.market_calendar.MarketCalendar

method), 33

method), 40
(pan-

method), 33

get_special_times() (pan-
das_market_calendars.MarketCalendar
method), 40

get_special_times_adhoc() (pan-

get_special_times_adhoc()

das_market_calendars.market_calendar.MarketCalendar

method), 33
(pan-

das_market_calendars.MarketCalendar
method), 40

is_custom() (pandas_market_calendars.MarketCalendar
method), 41

is_different() (pan-
das_market_calendars.market_calendar.MarketCalendar
method), 34

is_different() (pan-
das_market_calendars.MarketCalendar
method), 41

is_discontinued() (pan-

das_market_calendars.market_calendar.MarketCalendar

method), 34

is_discontinued()
das_market_calendars.MarketCalendar
method), 41

is_open_now() (pandas_market_calendars.market_calendar.MarketCaler

(pan-

get_time(Q) (pandas_market_calendars.market_calendanMarketCalWZ?Pd)’ 34

get_time() (pandas_market_calendars.MarketCalendar
get_time_on() (pandas_market_calendars.market_calen

get_time_on() (pandas_market_calendars.MarketCalendar

H

method), 33
method), 40
method), 33

method), 40

is_open_now() (pandas_market_calendars.MarketCalendar
method), 41

d!!”r.MarketCalendar

late_opens () (pandas_market_calendars.market_calendar.MarketCalenc
method), 34
late_opens () (pandas_market_calendars.MarketCalendar

method), 41

has_custom (pandas_market_calendars. market_calendar.Z\MrketCalendar

has_custom (pandas_market_calendars.MarketCalendar

property), 33

property), 40

market_times (pandas_market_calendars.market_calendar.MarketCalenc

property), 35

market_times (pandas_market_calendars.MarketCalendar

property), 41

70

Index

pandas_market_calendars

MarketCalendar (class in pandas_market_calendars), open_time_on() (pan-
38 das_market_calendars.MarketCalendar
MarketCalendar (class in pan- method), 42

das_market_calendars.market_calendar),

31 P

MarketCalendarMeta (class in pan- pandas_market_calendars
das_market_calendars.market_calendar), module, 38
38 pandas_market_calendars.calendar_registry
merge_schedules() (in module pan- module, 29
das_market_calendars), 45 pandas_market_calendars.calendar_utils
merge_schedules() (in module pan- module, 29
das_market_calendars.calendar_utils), 29 pandas_market_calendars.class_registry
module module, 30
pandas_market_calendars, 38 pandas_market_calendars.market_calendar
pandas_market_calendars.calendar_registry, module, 31
29 _ ProtectedDict (class in pan-
pandas_market_calendars.calendar_utils, das_market_calendars.class_registry), 30
29
pandas_market_calendars.class_registry, R
30 RegisteryMeta (class in pan-
pandas_market_calendars.market_calendar, das_market_calendars.class_registry), 30
31 regular_holidays (pan-
N das_market_calendars.market_calendar.MarketCalendar
property), 35
name (pandas_market_calendars. market_calendar.Marketh]g&dfér holidays (pan-
property), 35 das_market_calendars.MarketCalendar
name (pandas_market_calendars.MarketCalendar prop- property), 42
erty), 41 regular_market_times (pan-
O das_market_calendars.market_calendar.MarketCalendar
attribute), 35
open_at_time() (pan- regular_market_times (pan-
das_market_calendars.market_calendar.MarketCalendar das_market_calendars.MarketCalendar at-
method), 35 tribute), 42
open_at_time() (pan- remove_time () (pandas_market_calendars.market_calendar.MarketCaler
das_market_calendars.MarketCalendar method), 35
method), 41 remove_time () (pandas_market_calendars.MarketCalendar
open_close_map (pan- method), 42

das_market_calendars.market_calendar.MarketCalendar
attribute), 35

open_close_map (pan- gchedule O (pandas_market_calendars.market_calendar.MarketCalendar
das_market_calendars.MarketCalendar at- method), 36
tribute), 42 schedule () (pandas_market_calendars.MarketCalendar
open_offset (pandas_market_calendars.market_calendar.Ma rketCa[ﬁ i), 42
property), 35 special_closes (pan-
open_offset (pandas_market_calendars.MarketCalendar das_market_calendars.market_calendar.MarketCalendar
property), 42 property), 36
open_time (pandas_market_calendars.market_calendar. M %gcééq%lff&ifs ses (pan-
_ property) 35 das_market_calendars.MarketCalendar
open_time (pandas_market_calendars.MarketCalendar property), 43
) property), 42 special_closes_adhoc (pan-
open_time_on() (pan- das_market_calendars.market_calendar.MarketCalendar
das_market_calendars.market_calendar.MarketCalendar

roperty), 36
method), 35 property)

Index 71

pandas_market_calendars

special_closes_adhoc (pan- valid_days(Q) (pandas_market_calendars.MarketCalendar
das_market_calendars.MarketCalendar method), 44
property), 43

special_dates() (pan- W
das_market_calendars.market_calendar.MarketCqlesigia sk (pandas_market_calendars.market_calendar.MarketCalendar
method), 36 property), 38

special_dates() (pan- weekmask (pandas_market_calendars.MarketCalendar
das_market_calendars.MarketCalendar property), 44
method), 43

special_market_close (pan-

das_market_calendars.market_calendar.MarketCalendar
property), 37

special_market_close (pan-
das_market_calendars.MarketCalendar
property), 43

special_market_close_adhoc (pan-
das_market_calendars.market_calendar.MarketCalendar
property), 37

special_market_close_adhoc (pan-
das_market_calendars.MarketCalendar
property), 44

special_market_open (pan-
das_market_calendars.market_calendar.MarketCalendar
property), 37

special_market_open (pan-
das_market_calendars.MarketCalendar
property), 44

special_market_open_adhoc (pan-
das_market_calendars.market_calendar.MarketCalendar
property), 37

special_market_open_adhoc (pan-
das_market_calendars.MarketCalendar
property), 44

special_opens (pandas_market_calendars.market_calendar.MarketCalendar
property), 37

special_opens (pandas_market_calendars.MarketCalendar
property), 44

special_opens_adhoc (pan-
das_market_calendars.market_calendar.MarketCalendar
property), 37

special_opens_adhoc (pan-
das_market_calendars.MarketCalendar
property), 44

T

tz (pandas_market_calendars.market_calendar.MarketCalendar

property), 37
tz (pandas_market_calendars.MarketCalendar prop-
erty), 44

\Y

valid_days () (pandas_market_calendars.market_calendar.MarketCalendar
method), 37

72 Index

	Documentation
	Overview
	Major Releases
	Source location
	Installation

	Calendars
	Quick Start
	Contributing
	Future
	Sponsor
	Updates
	Change Log
	Updates
	4.4.0 (02/10/2024)
	4.3.3 (12/30/2023)
	4.3.2 (12/09/2023)
	4.3.1 (09/06/2023)
	4.3.0 (09/05/2023)
	4.2.1 (08/21/2023)
	4.2.0 (08/20/2023)
	4.1.4 (02/04/2023)
	4.1.3 (12/26/2022)
	4.1.2 (12/08/2022)
	4.1.1 (10/31/2022)
	4.1.0 (10/08/2022)
	4.0.3 (10/08/2022)
	4.0.2 (10/08/2022)
	4.0.1 (09/03/22)
	4.0 (08/02/22)
	3.5 (06/25/22)
	3.4 (03/05/22)
	3.3 (01/30/22)
	3.2 (10/10/21)
	3.1 (08/29/21)
	3.0 (8/17/21)
	2.1 (8/16/21)
	2.0.1 (5/20/21)
	2.0 (5/8/21)
	1.7 (5/6/21)
	1.6.2 (5/6/21)
	1.6.1 (11/3/20)
	1.6 (9/14/20)
	1.5 (8/30/20)
	1.4.2 (8/11/20)
	1.4.1 (7/22/20)
	1.4 (7/11/20)
	1.3 (4/23/20)
	1.2 (10/22/19)
	1.1 (5/3/19)
	1.0 (3/26/19)
	0.22 (3/25/19)
	0.21 (12/2/18)
	0.20 (7/2/18)
	0.19 (7/2/18)
	0.18 (6/8/18)
	0.17 (5/24/18)
	0.16 (5/12/18)
	0.15 (2/23/18)
	0.14 (1/7/18)
	0.13 (1/5/18)
	0.12 (12/10/17)
	0.11 (10/30/17)
	0.10 (9/12/17)
	0.9 (9/12/17)
	0.8 (8/24/17)
	0.7 (5/30/17)
	0.6 (3/31/17)
	0.5 (3/27/17)
	0.4
	0.3
	0.2
	0.1

	Markets & Exchanges
	Calendar Status
	Equity Market Calendars
	Futures Calendars
	Bond Market Calendars
	Exchange Calendars Package

	Package Contents
	pandas_market_calendars
	pandas_market_calendars package
	Submodules
	pandas_market_calendars.calendar_registry module
	pandas_market_calendars.calendar_utils module
	pandas_market_calendars.class_registry module
	pandas_market_calendars.exchange_calendar_asx module
	pandas_market_calendars.exchange_calendar_bmf module
	pandas_market_calendars.exchange_calendar_cfe module
	pandas_market_calendars.exchange_calendar_cme module
	pandas_market_calendars.exchange_calendar_eurex module
	pandas_market_calendars.exchange_calendar_hkex module
	pandas_market_calendars.exchange_calendar_ice module
	pandas_market_calendars.exchange_calendar_jpx module
	pandas_market_calendars.exchange_calendar_lse module
	pandas_market_calendars.exchange_calendar_nyse module
	pandas_market_calendars.exchange_calendar_ose module
	pandas_market_calendars.exchange_calendar_six module
	pandas_market_calendars.exchange_calendar_sse module
	pandas_market_calendars.exchange_calendar_tase module
	pandas_market_calendars.exchange_calendar_tsx module
	pandas_market_calendars.exchange_calendar_xbom module
	pandas_market_calendars.holidays_cn module
	pandas_market_calendars.holidays_jp module
	pandas_market_calendars.holidays_oz module
	pandas_market_calendars.holidays_uk module
	pandas_market_calendars.holidays_us module
	pandas_market_calendars.jpx_equinox module
	pandas_market_calendars.market_calendar module
	pandas_market_calendars.trading_calendars_mirror module
	Module contents

	Examples
	Calendars
	Basic Usage
	Setup new exchange calendar
	Exchange open valid business days
	Schedule
	Get early closes
	Open at time

	Customizations
	Market times
	Customizing after initialization
	CAVEATS:
	FIRST
	SECOND

	Inheriting from a MarketCalendar
	Special Times
	Interruptions
	Advanced open_at_time

	Extra Usage
	Checking for special times
	Checking custom times
	Get the regular time on a certain date
	Special Methods
	Array of special times
	Handling discontinued times

	Helpers
	Date Range
	Merge schedules
	Inner merge
	Outer merge

	Use holidays in numpy
	Trading Breaks

	New Market or Exchange
	New Market or Exchange

	Indices and tables
	Python Module Index
	Index

